Polarized optical microscopy of semicrystalline polymers

Dario Cavallo

Outline

- optical anisotropy and crystal birefringence
- polarized light optical microscopy
- semicrystalline polymer morphology
- nucleation and growth of polymer spherulites

Optical anisotropy

Optical indicatrix: Surface which represents the refractive indexes

Two indeces of refraction for a generic orientation of the wavefront = BIREFRINGENCE

Optical anisotropy

Optically isotropic materials possess a single index of refraction, with a spherical indicatrix

Uniaxial crystals possess an indicatrix which is elipsoidal. They show two principal refractive indeces and an optical axis (parallel to the simmetry axis).

Double refraction

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Birefringent Calcite Crystal Electric Vector Orientations

Ordinary and Extraordinary rays **are linearly polarized at right angle**

n(o) – n(e) = **birefringence**

Light propagation in a birefringent crystal

The polarization state of the outcome light is correlated to the phase difference of the two waves linearly polarized in perpendicular directions. It depends on birefringence, specimen thickness and wavelenght.

 $x = 0$ for:

- 1. Φ = n 90° (the directions of the birefringent crystal coincides with those of the polarizer or analyzer; max intensity for Φ =n45°)
- 2. $n_e = n_o$ (for isotropic materials)
- 3. sen ((πd/λ)(n_e -n_o)) = 0 (destructive interference for the two outcoming waves)

Polarized optical microscopy

Semicrystalline polymers

Spherulites ~10-100 μm

POM SAXS WAXD

Spherulites

Optical properties of the spherulites

"Maltese Cross"

Optical properties of the spherulites

Banded spherulites

Spehrulitic growth rate

tempo

Spherulitic growth rate

Effect of crystallization temperature

Hoffman-Lauritzen growth theory (secondary nucleation)

Variation of free energy for the attachemnt of a first stem

After the first attachment

$$
\Delta G = 2ab\sigma_e - abl\Delta g
$$

Following

Hoffman-Lauritzen growth theory (secondary nucleation)

Setting $\Delta G = 2ab\sigma_{\rm s} - abl\Delta g$ equal to zero $l^* = \frac{2\sigma_e}{\Delta a} = \frac{2\sigma_e T_m^0}{\Delta h \Delta T}$

Hoffman-Lauritzen growth theory (secondary nucleation)

i = nucleation rate (nuclei per unit lenght per second)

 $g =$ lateral growth rate

Low undercoolings **All and South Low undercoolings**

$$
G(T) = G_0 exp \left[-\frac{U^*}{R(T - T_{\infty})} \right] exp \left[-\frac{K_g}{T \Delta T} \right]
$$

$$
G(T) = G_0 exp \left[-\frac{U^*}{R(T - T_{\infty})} \right] exp \left[-\frac{K_g}{T \Delta T} \right]
$$

 G_{0} = pre-exponential factor, temperature independent constant

 U^* = activation energy for transport of molecular segments (identical for all polymers, 1500 cal/mol)

 T_{∞} = limiting temperature at which chain segments are "frozen", corresponds to T_g-30 °C

$$
G(T) = G_0 exp \left[-\frac{U^*}{R(T - T_{\infty})} \right] exp \left[-\frac{K_g}{T \Delta T} \right]
$$

$$
K_g = \frac{Y b_0 \sigma \sigma_e T_m^0}{k \Delta H_f}
$$

 $\sigma\sigma_{\rm e}$ = product of lateral and surface free energy of the developing lamellar crystals

T° m = equilibrium melting temperature of the specific polymer crystals ΔH_f = melting hentalpy

 $b₀$ = size of the molecular segment in the direction perpendicular to the growth plane

 ΔT = undercooling

- T = crystallization temperature
- Y = constant: 4 in Regime I and III and 2 in Regime II
- k = Boltzmann constant

$$
G(T) = G_0 exp \left[-\frac{U^*}{R(T - T_{\infty})} \right] exp \left[-\frac{K_g}{T \Delta T} \right]
$$

Can be linearized as:

$$
\ln G + \frac{U^*}{R(T - T_{\infty})} = \ln G_0 - \frac{4b_0 \sigma \sigma_e T_m^0}{k \Delta H_f T \Delta T}
$$

Gibbs-Thomson equation

$$
T_m = T_m^0 \left[1 - \frac{2 \sigma_e}{l \Delta H_f} \right]
$$

Depression of the melting point due to the nanometric thickness of the lamellae (contribution of the large folding surfaces)

Hoffmann-Weeks extrapolation

$$
T_m = T_m^0 \left[1 - \frac{2\sigma_e}{l \Delta H_f} \right]
$$

Gibbs-Thomson equation

 $l = l^* + \delta l = \frac{2\sigma_e}{\Delta H_f (T_m^0 - T_c)} + \delta l$

Initial lamellar thickness from secondary nucleation theory

But T_m always > T_c due to thickening, considering a constant thickening factor β: $I = \beta$ l^{*} and substituting in the Gibbs-Thomson equation :

$$
T_m=T_m^0\Big(1-\frac{1}{\beta}\Big)+\frac{T_c}{\beta}
$$

Hoffmann-Weeks extrapolation

